Karl Wingett-Smith remembers activities that were going on concurrently with those in his earlier article….
    The Installations Department (ID) office was in a corner of the Experimental Shop at the river end of the Kingston site, beside us was the Structures Department and, in the more palatial area upstairs, was the Advanced Project Group.

Within the main Experimental building, were two ID facilities: the Electrical section under Ron Leader and the Hydraulics test rigs that were under Hamish Waugh. I never knew exactly what Ron & Co got up to (electrics are not exactly my forte, things aren’t live unless you get a big flash and bang when you join two wires); Hydraulics had two interesting rigs, though. One of these we all called Cloche Merle, due to its resemblance to the traditional Paris street urinal (a circular screen with a gutter and drain running around the inside somewhat below waist height. The virtue of that was that it enabled a gentleman relieving himself to raise his hat to a passing lady.) Despite my digression, that was ID’s centrifugal test rig whereon fuel or hydraulic components were attached to a rotating arm while the gutter caught any escaping fluids.

More Time In The Hawker Installations Department

Toptop toptoptoptoptoptoptop toptop top top top

The other was a wooden chair with a control column set up in front of it which, when connected to another, more complex, set of odds and ends (Derek Holden or someone else may be able to add more detail to this) created a hover flight simulator. Anyone, primarily the test pilots, would sit in that seat and try to keep the represented aircraft stable. Beyond the fact that, obviously, the pilots coped fine (as did Hamish who, I understood, flew Avro Ansons during WW2) while I, with a current PPL, failed miserably during the one go I scrounged on it.
    When I first joined HAL the six P.1127s were under construction there. When they went to Dunsfold for final assembly their space was taken by a substantial number of Hunters that had been replaced in the RAF first line interceptor role by the new Lightning. The Hunters were mainly being completely refurbished to become the Mk 66 for export to India, while a few became two seat trainer variants. Fuselages and wings were trestled separately.

When contractors were working on the roof and a fire was discovered there during their (and our) lunch break the Fire Brigade and Salvage Crews were called from their base just across Richmond Road. They arrived about 15 minutes after the alarm was raised! The fire crews played water on the roof and that brought down chunks of smouldering insulation that fell inside the shop, some of it landing on wings, more falling inside the open cockpits from which canopies and seats had been removed. Naturally a fireman’s instinct is to pour water on anything that might flare up and this involved turning their hoses inside the cockpits. Those of us who were in the building decided that this really wasn’t the best idea and grabbed CO2 extinguishers and waited underneath the wings so that we could use that and prevent water damage.
    Also in the Experimental Shop was the Hunter Fatigue Test Rig in which some poor airframe creaked and groaned to its final destruction that occurred with a very loud bang ‘when something broke’ to be followed by the clatter of all the shackled weights used to simulate flight loads. Not exactly a quiet life, but more about noises later.
    Cockpit pressure testing was also carried in the Experimental Shop. A large rectangular tank, rather like a swimming pool, had been sunk into the hangar floor, lined with white tiles and a guard rail placed all round; it was something like six feet deep and had a gimbal mounting at each end. A P.1127 cockpit was mounted on these, the pool was filled with water and the cockpit pressurised. The canopy protruded slightly above the water level so that it could be pushed to roll the cockpit section over to examine the underside etc. A good idea but it proved more difficult to turn over than expected. The shop foreman at that time was one Charlie(?) Price who had a reputation for never asking anyone to do what he wouldn’t do himself. Rumour at the time was that he had been involved in undercarriage retraction testing on a Fury and been picked up by the tailwheel; a larger man might have suffered severe injury. Anyway, he climbed over the safety rail and, using a long pole, leaned hard on it to push the cockpit over. Whether the pole slipped or the cockpit moved suddenly I don’t know; all I saw was that he fell into the tank. He emerged out the other side and I’ll swear that he was bone dry above the knees. I am convinced that he included walking on water as just one of his capabilities.
    The Robin Hangar across the yard held more of the ID test facilities: the air conditioning rig, the reaction control nozzle rig and the hover rig. Here the prime members of staff were Stan Williams, John Davey, Roger Samways, Tony Harris and Dave Tait, the last being our own fitter who could usually find ways of adapting these rigs for their various specific uses.

Unofficially, certain ‘foreigners’ were made there. For example, a very simple bit of tin bashing created a ‘hole’ with a lead-in ramp all round that enabled us to practice short range putting on an otherwise level floor. Also, having broken a half-shaft on my Rochdale-Ford Special for the third time as I arrived in our adjacent car park one morning, it afforded me the opportunity to change the complete axle assembly. I found a fractured casing that had been missed by the two garages who had replaced the previous ones. The shaft that I removed showed evidence of fatigue, caused by flexing with every rotation. That old axle may have been discovered when the site was redeveloped and builders excavated for the foundations, otherwise its likely to be still buried there for posterity.
    Most of these test rigs individually created a lot of NOISE! Also, even though we were literally next door to the Compressor House (run by Fred) with several large, 200 psi receivers between us, there was generally only enough air to run one of these rigs at a time. Inside our little hangar were several heater units connected in series so that we could get air at temperatures approaching 400 C and at 200 psi. These weren’t shielded in anyway, apart from insulation jackets. We became a bit concerned when some of the Tungum pipework showed evidence of wall thickness reduction due to corrosion beneath these blankets.
    Now to the tasks undertaken there. In an earlier article I mentioned our cockpit air conditioning rig, an almost complete P.1127 fuselage section between front and rear pressure bulkheads with the entire system in its expected locations in the real aircraft. Cooling air for the heat exchangers was ducted into them from a large fan to simulate flight and ground air flows. The cold air unit could be run up to its maximum speed of some 66,000 rpm and all engine bleed air (up to 200 psi) came via the heaters mentioned above. We required, I think, a hot air flow variable up to 18 lb/min regulated by our own design of pressure regulating and flow control valve. This consisted of a fixed orifice plate with a precisely shaped ‘carrot’ moving along its axis to vary the area of the flow control annulus. We did all the calculations on this and it was manufactured in-house by profile grinding. John and I used to set these up, matching carrots, orifice plates and springs on the rig to match the theoretical performance we sought. This could be pretty noisy with the in-cockpit levels exceeding 95 db. Mind you, at that time, nobody had begun to challenge the long-term damage caused by this; I am now totally deaf in one ear (but I also did a lot of small-bore rifle shooting…)
    Although John and I could make a lot of noise it was (in my opinion) much worse when Roger Samways was testing the reaction control or ‘puffer’ nozzles. These not only required flows of very hot air at 5 lb/sec to be released as quickly as the valves could be opened and closed (to demonstrate and prove effective sealing and component life) but he also used to sing at the same time!
    The other major cause of noise was the hover rig. This was a Dexion frame on which was mounted a black-painted ground board that could be adjusted for height and angle in X and Y axes with a scale model of the P.1127, complete with engine nozzles, fixed above it. This enabled simulated hovers at variable heights and attitudes relative to the ground. In itself it made no noise….until the air supplies were in use. The ‘fan’ or low pressure compressor air for the front engine nozzles came from our communal 200 psi supply and heaters, whilst the rear high pressure compressor ‘hot’ engine nozzles, were fed from the noisiest source of all, a Bristol Proteus turboprop engine combustion chamber (or can) that was fired up with its exhaust pointing either outside the hangar or through the rear nozzles on the model. Engine intake suction was represented by something else (I don’t know what!) Anyway, the can was so loud that nearby householders lodge complaints and a silencing system had to be devised and installed.
    Before running the hover rig, the black ground board was coated with an emulsion of white titanium dioxide in oil to show air flow paths as the engine nozzle exhaust hit the black ground board and potential re-ingestion of engine nozzle air by the engine. Any significant volume of hot air reduces the engine mass flow and, consequently, the thrust produced. It was on this rig that under fuselage strakes were tested and developed.
    You have to remember that all this took place between April 1960 and September 1962 when private car ownership was in its infancy. I mentioned John Apted’s Hillman Husky earlier; that was the only car in which I have ridden that was equipped with a four point seat harnesses. Ray Searle had a reverse sloping rear-window Ford Anglia 105 E, I had a former Fordson milk delivery van with much modified chassis, suspension and a Rochdale Motor Panels and Engineering GT bodyshell. In shape this was not unlike an E Type Jaguar that hadn’t yet been produced - there the resemblance ended. Stan Williams had a Morris Minor, a new model, not a 1930’s two seater of which Roger was so proud!
    We all used to park alongside the ID Robin Hangar where there were both a hedge and a ditch. One day Roger had a trade visitor who was taking him out to lunch, they were going in Roger’s pride and joy. His colleagues had other ideas, however. The fabric hood had only a very small rear window and Roger had parked nose to ditch and hedge. Ready to pop out for lunch he climbed aboard, started up, engaged reverse and moved slowly forward, slipping gently into the shallow ditch despite increased revs. Unknown to him, three of us were bent double behind lifting the rear wheels off the ground and pushing slowly. Of course it was easy enough to extract him! So, you see, the mixture of work, learning and (a little) fun created a pretty good atmosphere and some friendships that have stood the test of time.
    Another task with which I was involved was a study of kinetic heating and heat transfer, where I was led by Rene LeClaire. This was in the context of the supersonic P.1154 that was anticipated to be capable of protracted flight at Mach 1.7 (while the fuel lasted) and up to 15 minutes dash at up to M 2.3. This latter was limited by water spray injection into a water boiler to cool the air through the air conditioning system heat exchangers. I did the sums on that and on the weight vs performance balance for cockpit insulation. René did the bulk of the theory on cabin heat loads and between us we devised an approximate method of calculation.

We concluded that the nose of a single seat aircraft could be represented by a cone and that the pilot and equipment inside by a frustum of smaller diameter. The space between was the path of cooling air. We produced a report on this (I still have a copy) and designed an electrically heated specimen for tests. Having done that I moved on for the reasons given in my earlier article and missed that work. Since the next government axed the P1154 I have no idea if our work on that was ever of any real value. Does anyone out there know?