Due to the Coronavirus pandemic the Associaton has not been able to hold its usual Wednesday afternoon meetings at the YMCA Hawker Centre in Kingston but as members have become familiar with the internet Zoom facility the Committee and Chairman decided to see if Members would like to see talks on this medium. The Rev Dave Priddy already used Zoom for his church so he offered to host our first experiment, a talk by HA Member Dr Michael Pryce, which was Zoomcast on December 9th.
    After gaining a BA in history at Manchester University Mike was awarded an MSc and Diploma at Imperial College London in the history of technology, followed by a DPhil in science and technology policy at Sussex University. At Manchester Business School he became a research fellow and at Cranfield University he was a lecturer at the Defence Academy at Shrivenham, became accredited as an Independent Scientific and Technical Advisor to the MoD and was a Senior Air Systems Analyst at the MoD Defence Science & Technology Laboratory (DSTL). He has also advised BAE Systems on project design matters and is about to start working for the company.
    Designing, building and operating aircraft is not a pure science and can be accomplished in various ways. The practical way things were done at Kingston went against the scientific methods adopted elsewhere.  

The Fall Of Icarus - RAF Policy In Fighter Design 1945 - 1949

Toptop toptoptoptoptoptop toptoptoptoptop    

Post WW 2 the UK looked at the application of science to aircraft design. The origin of the different approaches at Kingston and Warton was in the 1940s, not in culture but in what they were doing and why.
    The VE Day flypast in 1946 illustrated the fact that the war was won overwhelmingly by piston engined aircraft and in 1945 the RAF had as many Gladiator biplanes in service as jet propelled Meteors. Few new wartime ideas were developed or applied during the war; radar, the jet engine etc were pre-war developments. WW 2 was a war of production, not innovation. That wars are not won solely by fighting but also by production was recognised by all combatants. During the war there was incremental improvement of existing aircraft with increased mass production. So, applied science was a novelty and the RAE was mainly concerned with improving existing aircraft in small steps in close relationship with the RAF. Doing the radically new things, like the Miles M.52, were side issues.
    Post war there were new technologies - the jet engine, use of radar inside the aircraft. There were huge existing air fleets which had cost a lot of money. There was no threat of attack on the horizon so what should the Government do? Rely on the piston engined aircraft or embrace the new technologies? It was decided to go for the new and throw away many of the existing types, even in those times of great austerity; to maintain the production capacity for a possible war and to innovate by design.
    Official RAE missions to Germany had been shocked by the new technologies of swept wings and jet or rocket propelled fighters. Examples were brought to Farnborough and exhibited. The new technologies were clear and the policy was adopted by Britain. The RAE saw they could take a leading role in designing aircraft, taking it away from industry which would productionise the designs. Sir Stafford Cripps wanted to nationalise as well, but it did not happen.
    The biggest new threat at the time was the atomic bomb where one aircraft and one bomb could do what had needed thousands of bombers using conventional bombs, as demonstrated by the destruction of Hiroshima. Only the USA and the UK had nuclear weapon technology but Russia knew what was going on through espionage Other countries could develop atomic weapons against which Britain needed a defence; they needed to shoot down almost all atom bombers.
    In WW 2 to shoot down 10% of raiding bombers was an amazing result and 3 - 4% was considered quite good. Against atom bombers it would be necessary to down 90% (not of 1000 but of 10, 20 or 30, say) to avoid mass destruction. This was the problem the RAE focused on. To achieve a 90% bomber kill rate needed high altitude interception using integrated radar and weapons. The solution needed the application of science which industry could not do; a scientific institution was needed to pull all the technologies together, like the RAE.
    The RAE was not alone in this view. Air Chief Marshal Sir James Robb, Commander in Chief Fighter Command, published a paper addressing the interception problem and 90% success rate. He foresaw new technologies including airborne control units (AWACS today) over Europe, far enough from the UK to identify the raiders early; UK ground based radars would be too late. He saw the need for UK based supersonic fighters and stowed parasite fighter carriers loitering far away to ensure early interception, and for weapons powerful enough to guarantee instant destruction of the bombers, possibly long range, radar guided missiles with proximity fuses. Even the installation of 4.5 inch guns in fighters was considered; one hit would bring down a bomber.
    In Germany the RAE mission also spoke to people and spotted Hans Multhopp, a maths prodigy and student of the aerodynamicist and mathematician, Ludwig Prandtl at, Gottingen University. Multhopp worked under Kurt Tank at Focke-Wulf where he conceived the 1944 Ta183 with 42 deg swept blunt leading edge wing, tall, highly swept fin carrying a highly swept tailplane on its tip. The short fuselage housed a jet engine fed by a nose intake. It was an ‘emergency fighter’ to defend the Reich from expected B-29 Superfortress raids by flying high, diving fast through the Mustang escort fighters to hit the bombers and fly clear. It proved difficult to make the design work aerodynamically and, especially, structurally. However, this aircraft looked like what the UK needed to leapfrog to a new level, so Multhopp, with his assistant Martin Winter, was brought to RAE in 1946. Multhopp, from an apparently ultra right pro-Nazi family and seemingly unperturbed to see thousands of Poles and Hungarians as slave labour, was difficult to work with.
    The highly swept wing had quite a large leading edge radius which created a high leading edge suction to offset the induced drag. The ‘T’ tail was clear of fuselage and wing turbulence to reduce drag. Multhopp hated delta wings and won over the RAE who set up an advanced study fighter group which produced a document describing a configuration very similar to the Ta183. This was distributed to many UK fighter companies who were invited to make proposals based on this configuration. Hawker’s was the original P.1067 with nose intake and ‘T’ tail, and English Electric’s was what became the Lightning. Armstrong Whitworth and Fairey also submitted designs. Multhopp had convinced the RAE that ‘T’ tails were best and later many UK aircraft used them; eg Buccaneer, Javelin and many airliners.
    The RAE commissioned Shorts to build a low speed wooden aircraft with adjustable wing sweep and tailplane position, and English Electric to build a high speed test vehicle. At EE Freddie Page cut the wing tips to give aileron hinge lines at right angles to the fuselage and moved the tailplane to a very low position. Kingston also lowered the tailplane, reduced the wing sweep, and replaced the nose intake with two side mounted wing root intakes for many sensible reasons.
    Highly swept structures are very difficult to design and are heavy. At Warton EE had to work very hard to do the structural analysis and settled on the ‘relaxation’ technique developed at Oxford in 1938. However, the mathematics was very laborious and needed to be speeded up; but how? A 1930s paper by Alan Turing led to the first digital computer, ‘Pilot Ace’, at the NPL in Teddington., and the ‘relaxation’ method was something he wanted to tackle. EE’s Ivan Yates and others used ‘Pilot Ace’ to solve their wing maths and flutter problems. It took two years.
    Meanwhile Hawker had flown the Hunter. Ralph Hooper, then in the Experimental DO, had designed and stressed the wing root spar fixture in a couple of weeks. Hawker got some 2,000 Hunters, with four 30 mm cannon to destroy bombers. into service before the RAF had their first Lightning.
    The nuclear bomber threat which the Lightning was designed to counter had meanwhile largely gone away and Duncan Sandys’ 1957 White Paper deemed it would be Britain’s last manned fighter. The Hunter proved to be very adaptable to new roles because underwing store carriage was easy, and also easily modifiable because of its simple structure where possible failure could be predicted. The Hunter was a flexible, simple design lending itself to incremental improvement and requiring no new science or design tools. The Hunter demonstrates that you don’t have to go to the most sophisticated technologies; there are simpler ways. Good design tends towards simplicity rather than creating something complex and having to invent new solutions.
    The Lightning was twice as fast as the Hunter, cost four times as much and was used for half the time. The Hunter generated more income for the UK than did the Lightning.
    Fighter procurement has moved away from the WW 2 concept of improvement and mass production to ‘silver bullet’ projects incorporating enormous technologies, purchased in small numbers and costing a fortune. The tendency is to go for new advanced technologies rather doing what is possible today. Government policy says science is the answer so if we throw more money into science and innovation then things will be better. Perhaps we should focus on what can be produced today because the future will be different to what is imagined.
    Multhopp’s thinking was imbued into Warton leading to aerodynamics-led science, believing in new techniques and technologies rather than making use of what is available today. Kingston took the simple, intuitive physics approach rather than complex mathematical analysis.
    Post war UK policy was to try to fly too high, too close to the sun like Icarus. This was too hard and too time consuming. If the UK had done more Hunter type projects and fewer of the Lightning type which litter the ‘project cancelled’ genre of books which chronicle the leapfrogs that never happened, we might have had a very different aircraft industry today.
    After a short Q & A session, interrupted by internet problems, Frank Rainsborough (our recently appointed Speakers Secretary) gave the vote of thanks to Mike Pryce for his engrossing talk, thanked Dave Priddy for hosting the Zoom meeting which had been largely successful, and Chris Roberts for proposing it. There were 38 participants.